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ABSTRACT 

Recent work by the author and others indicates that conductive heat losses in ductwork 
will usually increase significantly when airflow rates are reduced, as will happen when a 
modulating firnace is installed in place of an existing high-output unit. A duct retrofit 
strategy is proposed that to mitigate these losses. The strategy involves the use of 
insulating sleeves installed inside the supply runout ducts. 
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INTRODUCTION 

Some recent work (Walker 2001, Andrews 2002) has indicated that installing a 
modulating furnace in a conventional duct system may, in many cases, result in a 
significant degradation in thermal distribution efficiency. The fundamental mechanism 
was pointed out nearly two decades ago (Andrews and Krajewski 1985). The prloblem 
occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are 
located outside the conditioned space. It stems fi-om the fact that when the airflow rate is 
reduced, as it will be when the modulating furnace reduces its heat output rate, the supply 
air will have a longer residence time in the ducts and will therefore lose a greater 
percentage of its heat by conduction than it did at the higher airflow rate. 

The impact of duct leakage, on the other hand, is not expected to change 'very 
much under furnace modulation. The pressures in the duct system will be reduced when 
the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by 
the fact that the operating time will increase in order to meet the same heating load as 
with the conventional furnace operating at higher output and airflow rates. The balance 
would be exact if the exponent in the pressure vs. airflow equation were the same as that 
in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually 
-0.5 and the pressure-leakage exponent is usually -0.6, the leakage loss as a fraction of 
the load should be slightly lower for the modulating furnace. The difference, however, is 
expected to be small, determined as it is by a function with an exponent equal to the 
difference between the above two exponents, or -0.1. 

The negative impact of increased thermal conduction losses from the duct system 
may be partially offset by improved efficiency of the modulating furnace itself. Also, the 
modulating furnace will cycle on and off less often than a single-capacity model, and this 
may add a small amount (probably in the range 1% - 3%) to the thermal distribution 
efficiency. 

Nevertheless, the effect of furnace modulation on thermal distribution eficiency, 
both as calculated and as measured in the laboratory, is quite significant. Although exact 
quantification of the impact will depend on factors such as climate and the locati'on of the 
ducts within the structure, impacts in the 15% - 25% range are to be expected for ducts 
located outside the conditioned space, as most residential duct systems are. This is too 
large a handicap to ignore. 

UPGRADING THE DUCT SYSTEM 

This report is based on the conclusion drawn from the above discussion, that it is, usually 
a mistake simply to install a modulating furnace in a duct system that was sized for a 
larger unit, without giving any thought to the implications of this action on the 
performance of the overall system. A better plan would be to use the occasion of furnace 
replacement as an opportunity to interest the customer in a comprehensive systern 
upgrade, including the ductwork. Ideally, the home should be left with a system that is 

ASHRAE Standard 152P imposes a 2% to 5% penalty for cycling losses on seasonal 
distribution efficiency. The 1% to 3% range suggested here is based on the likelihood 
that the modulating furnace will reduce cycling but not eliminate it completely. 
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as close as possible to what would have been installed in a new home had there been 
complete design freedom. However, economic constraints usually preclude a complete 
replacement of the existing duct system. There may be a useful role, therefore, for a 
partial upgrade of the duct system. Of course, duct repairs - including both sealing and 
insulation - are often a good idea even in the absence of furnace modulation. One thing 
that modulating equipment does is shift the balance of priorities more in the direction of 
insulation relative to sealing. 

Difficulties encountered in efforts to seal and insulate existing ductwork :include: 

Ducts are in locations that are unpleasant, difficult, or impossible to reach. 
Existing insulation gets in the way of efforts to seal the ducts. 
Sealing, if done by hand, is a relatively slow process even under ideal conditions. 
Aerosol sealing in existing residential duct systems involves some added-cost 
steps, such as isolating equipment heat exchangers and the system fan, that can be 
avoided in new systems. 
Adding insulation, especially beyond R-4, may be limited by duct placement 
close to structures and multiple supports, and its effectiveness may be redluced by 
unintentional or unavoidable compression of the insulating material. 

If sealing difficulties were the only issue, one could perhaps make a blanket 
recommendation that aerosol sealing be used. However, in cases where insulatioa is also 
of key importance, additional options may bear looking into. 

This report describes one such possible approach. Since it has not yet been tried 
even experimentally, it is premature to make an estimate of its probable merit. R.ather, it 
is introduced as a conceptual approach to serve as a benchmark for any detailed 
costhenefit calculations that would surely be part of any attempt to reduce it to practice. 

The proposed strategy is based on the fact that many if not most duct systems 
today are of the “trunk and branch” design. That is, one or more main trunk ducts, 
usually rectangular in cross section, emerge fi-om the central heating equipment. From 
these trunk ducts, so-called “runouts,” usually round in cross section, connect the main 
trunks to the individual supply registers. These runouts tend to be numerous enough that 
their surface area generally exceeds the surface area of the trunk ducts. 

These considerations have led to the suggestion that insulating sleeves, installed 
internally to the runout ducts, could play a significant role in improving system 
performance, especially in systems where a modulating furnace is to be installed. The 
reasons for thinking this might be a good idea for such situations are: 

0 Internal insulation is more effective than external insulation, per unit of thickness, 
in runout ducts of diameters typical in American housing. 
The expectation that a modulating furnace will be running at reduced flow rates 
most of the time should make the reduction in cross section more acceptable than 
in systems with constant-speed furnaces. 
The insulating sleeve will also provide air sealing to the runout ducts as a bonus, 
eliminating any need to remove existing external insulation to access these ducts 
for sealing. 

2 



A way to think about this is to realize that the runouts generally have much higher 
surface-to-volume ratios than the trunks, which means that the ducted air gets its 
maximum exposure to conductive losses when it is in the runouts. In the trunks, the air 
streams destined for the various rooms of the house are like puppies huddled together for 
warmth, whereas in the runouts each air stream is “on its own” in this regard, like a 
puppy that has been separated from its littermates. 

Under this strategy, any work on the trunk ducts would still need to be ad.dressed 
in the conventional manner. It should be kept in mind, though, that trunks are often more 
accessible than the runouts, both because they are more centrally located in the zone 
containing the ducts and also because the total distance of “technician crawl” required to 
reach them is usually much less than for the more spread-out runout ducts. 

The remainder of this report addresses three issues: 

Relative cross-sectional areas of trunks vs. runouts in typical housing. 
0 Thermal efficacy of internal insulation in various duct retrofit protocols.. 

A possible way to install internal insulating sleeves in runout ducts of circular 
cross section. 

PROPORTIONS OF DUCT SURFACE IN TRUNKS AND RUNOUTS 

Measurements of the duct system configurations were made in eleven single- 
family homes in Long Island, New York. These data were analyzed to determine the 
proportions of duct surface area represented in trunk ducts and plenums, on the one hand, 
and in runouts, on the other. Table 1 displays the results. 

Table 1. Distribution of Supply Duct Surface Areas Outside Conditioned Space iin 
Eleven Single Family Homes 

, 
9 1502 16 222 23 7 0.3 1 48 
10 2603 21 447 419 0.33 52 
12 2123 18 3 22 257 0.27 56 
14 729 6 127 88 0.29 59 
15 1476 7 169 20 1 0.25 46 
* Skipped house numbers were either not single family, had ducts in conditioned space, 
had non-circular runouts, or data were lacking. House 6 had separate systems serving 
each of the two main floors. 
**Supply duct surface area divided by heated floor area. 



Leaving out System 6B, which is an “octopus” rather than a trunk-and-branch system, the 
average percentage of duct surface area that is in runouts is 56%. Although this is a very 
restricted sample and should be supplemented by data from other regions, it lends some 
credibility to the expectation that runouts may comprise at least half of the duct surface 
area in a typical home. The remaining discussion will be based on this expectation. 

INTERNAL VS. EXTERNAL INSULATION 

The following duct insulation cases will be considered: 

1. As-found system running at full capacity and aifflow. 
2. As-found system running at half capacity and aifflow. 
3. System as in (2) above with insulation added to runouts: 

0 1/2” interior 
0 3/4” interior 
0 1” interior 
0 

0 

0 

1” exterior (R-4 duct wrap) 
2” exterior (R-8 duct wrap) 
1/2” interior and 2” exterior 

4. Selected cases from Group 3 above with supply trunks also refitted by sealing 

5. The cases as in Group 4 above with return ducts also refitted to the same level 
2/3 of the leaks and adding 2” (R-8) duct wrap to exterior 

as the supply trunks. 

HEAT LOSS FROM A BENCHMARK DUCT SYSTEM 

This section describes the benchmark duct system used to calculate heat losses in the 
ducts, with reference to ASHRAE Standard 152P (ASHRAE 2001). The details of the 
calculation are given in the appendix. 

In order to benchmark the eflicacy of various insulation strategies in a duct 
system, let us take as an example case a house with 2000 ft2 of conditioned floor area. 
The house is heated and cooled with a forced-air system whose size was driven by the 
specification of a 3-ton (36,000 Btu/h) air conditioner. At a nominal 400 cfm peir ton, 
this requires the capability of moving 1200 cfm of air through the duct system. ‘The 
furnace in the as-found system will be assumed to have a thermal output of 65 000 Btu/h, 
consistent with a 50 O F  temperature rise. It is to be replaced with a modulating furnace 
whose maximum capacity is the same as that in the as-found system and which has a 
turndown ratio of 2. The system airflow with the modulating furnace will be assumed to 
scale with the heat output, maintaining a constant temperature rise through the unit. 

ASHRAE Standard 152P has a provision for a “default” duct surface area!, which 
for supply ducts is 27% of the conditioned floor area. This is intended to represent a 
“typical” duct system for cases where the actual surface area was not measured. If we 
use this typical value as a benchmark, the whole duct system has 540 ft2 of surface area. 
If this is divided between trunks and runouts in a proportion consistent with the findings 
of the previous section, this would result in approximately 240 ft2 of trunk ducts and 
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300 R2 of runouts. In order to get a concrete visualization of this, it would be consistent 
with a duct system that had two trunk ducts emerging from the furnace, each beiing 25 R 
long and with a 12 in. X 14.4 in. cross section. The runouts might be twelve in number, 
six on each of the two trunk ducts, 6 in. diameter and 16 R in length. Of course, many 
other configurations would also be consistent with the overall surface area parameters. 

There are no default duct leakage rates in ASHRAE Standard 152, although at one 
time a set of defaults equal to 17% of system fan flow on each side of the system were 
proposed on the basis of stock characterization research performed in California. In this 
study, it will be assumed that the as-found system has leakage (to/fi-om outside) equal to 
10% of fan flow, or 120 cfm, on each side of the system. 

Another important parameter is the temperature difference between the ducts and 
the space surrounding them. In this report, this is assumed to be 30 ?F on both thle supply 
and return sides. This is consistent with a duct zone temperature of -40 ?F if the 
temperature inside the house is 70 O F .  This would be a reasonable seasonal average in a 
northern U.S. climate and ducts in a ventilated attic or crawl space. 

The insulating material will be assumed to have an R-value of 4 per inch, as char- 
acterized in a flat-plane application such as a house wall or the wall of a rectangular duct. 

Two major assumptions were made that affect duct leakage under the various 
insulation and equipment conditions studied. These are: 

1. Application of internal insulation to the runouts stops any leaks occurring in that 
portion of the duct system. 

2. Internal insulation causes the pressures in the duct system to change, because of 
the reduced cross sectional area available for airflow. 

How these assumptions are applied is discussed more klly in the Appendix. 

IMPACT OF DUCT AND EQUIPMENT PARAMETERS 

With these assumptions in place, we are now in a position to calculate the impact on DE 
of furnace modulation using various alternative insulation strategies. The calculaltions 
were done using the version of ASHRAE Standard 152P resident on the Lawrence 
Berkeley National Laboratory (LBNL) Web site (http://ducts.lbl.gov ) at the time these 
calculations were performed, i.e., late 2001. Although the researchers at LBNL are 
currently revising this calculator in line with changes in the standard, it is not expected 
that these changes would affect the results reported here, because the equations that are 
used in the Appendix are not being altered. 

Modulatinp Furnace in the As-Found System 

Under the assumptions outlined above, the as-found system with fbrnace running at full 
capacity was found to have a delivery effectiveness (DE) of 68.4%. When the furnace is 
turned down to its minimum capacity, the airflow decreases by 50% but the duct leakage 
decreases by even more, from 120 cfm to 52 cfm, because the 0.6 power variation of 
leakage with pressure exceeds the 0.5 power variation of airflow with pressure. The a- 
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factors therefore increase somewhat when the capacity is turned down, but this effect is 
overwhelmed by the drop in the B factors, resulting in a DE of 55.5%. 

The drop in DE is about 13 percentage points, but the percentage impact on fuel 
use is even greater. Everything else being equal, fuel consumption will increase by 
23.3% at the minimum capacity and airflow rate, compared with that at the maximum. 
As has already been indicated, the modulating furnace may be more efficient than the 
model it is replacing, and some benefit in distribution efficiency may be expected from 
reduced cycling with the modulating furnace. Still, an efficiency penalty anything like 
that indicated above is a tremendous burden to bear for any technology, and it provides 
strong incentive to try to correct it. 

Interior Insulation in the Supply Runout Ducts 

The obvious answer to this problem is to upgrade the duct system. The idea behind this 
report was that it might be possible, by means of a relatively simple retrofit on thle supply 
runout ducts alone, to make up for the negative impact on efficiency as shown above. It 
was hoped that if a simple means could be found to install a layer of insulation inside the 
runout ducts (accessible from the inside of the house after the registers have been 
temporarily removed) it might become common practice in the industry. 

Calculations were performed of these impacts, using the three thicknesses of 
internal insulation ranging from 0.5 inches to 1.0 inch. The internal insulation material 
was assumed to have the same thermal conductivity as the external insulation considered 
above, namely 0.02 Btu/h-R-”F. 

Under these assumptions, the DE of the system under full turndown (600 cfm) 
operation rises significantly. Recall that the DE in the as-found system dropped from 
68.4% to 55.5% when the furnace output and airflow rate were cut in half. With the 
added insulation, the DE for the half-capacity and airflow system rises from 55.5% to: 

63.3% for 1/2” inside insulation; 
64.6% for 3/4” inside insulation; 
65.6% for 1” inside insulation. 

The use of this inside insulation decreases the energy penalty of furnace 
modulation from 23% to somewhere in the 4% - 8% range, depending on the thickness of 
the insulation. This is a dramatic improvement. True, the negative impact on DE is not 
completely erased, but most of it is. 

For comparison purposes, adding R-4 duct wrap to the outside of the runout ducts 
would raise the DE only to 61.9%. Adding R-8 duct wrap to the outside of the runouts 
gives .a DE of 64.2%. The latter figure is in the range of the numbers for inside 
insulation, so deciding between them becomes a matter of which action is more feasible. 
It also depends on the external insulation being as effective as indicated by the indicated 
R-value. There is some evidence that external duct wrap can be less effective than this, 
possibly due to unintended compression of the insulating material (Andrews 200:2). 
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Can the Duct Svstem Be Made Better Still? 

The conclusion fkom the above analysis is that in the benchmark duct system it is 
possible to counteract most of the negative impact of the reduced flow rate through the 
introduction of interior insulation in the runout ducts. The logical follow-on question, 
though, is “Why stop there?” Perhaps the decision to install a modulating furnace can be 
turned into an advantage by improving the duct system sufficiently so that its 
performance is much superior to what it was using the old furnace. 

We have yet to consider fixing the supply trunk ducts or any part of the return 
system. It is likely that in may cases the supply trunk ducts will be easier to reach than 
the supply runouts. If they are in the attic, they tend to be centrally located under the 
ridgeboard, where head clearance is greatest, whereas the runouts usually head irito the 
darker, tighter, less accessible portions of the attic, such as under the eaves. If the supply 
ducts are in a crawl space, there will be no more head clearance in one place than in 
another, but the amount of crawling required to reach the trunk ducts will be much less 
than that required to reach the entire system. 

Consider our benchmark duct system with its hrnace in the middle of the crawl 
space, two branch trunks leading out 25 ft in opposite directions along the long axis of 
the house, and 12 runouts, each 16 ft in length. To reach the trunk ducts requires 2 X 25 
= 50 R of crawling by the technician, but to reach the whole supply system requires this 
50 ft plus 12 X 16 = 242 A of crawling, nearly five times more! This fact, combined with 
the often-found situation that the runouts are either very close to joists and subflooring 
above, or worse, are in panned joists, adds appeal to a retrofit strategy that confiries to the 
trunks the requirement of physically accessing the ducts. 

The judgment was also made that 1/2-inch inside insulation is likely to be much 
easier to work with than anything thicker. With this in mind, the impact on DE of 
installing 1/2-inch insulation inside the runouts together with sealing and external 
wrapping of supply trunks was considered. Specifically, it was assumed that the supply 
trunks would be retrofitted by pulling away the existing insulation, finding and sealing 
two-thirds of the leaks, replacing the existing insulation, and finally wrapping the whole 
with an additional R-8 duct wrap. In addition to its insulating value, the added duct wrap 
makes it unnecessary to consider aesthetics in the process of opening and replacing the 
existing insulation, as long as it is replaced in a manner that covers the ducts. 

This retrofit protocol was found to increase the DE under low-capacity operation 
to 73.7%. Not only is this a dramatic improvement on the 55.5% DE that will result if 
nothing is done, it is even a worthwhile improvement on the original 68.4% DE in the as- 
found system. Fuel use under. the benchmark conditions would be reduced by 7%. 

Note that the 73.7% efficiency is under low-flow operation, whereas the original 
68.4% was at the full capacity and airflow. For those times when the modulating furnace 
happens to be running at full capacity, the DE with the proposed strategy will actually 
rise to over 82%. 

It is possible to do still better. If the return duct system can be retrofitted in the 
same manner as the supply trunks, the DE now rises to 79.0% at half capacity and 
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airflow. This results in a 13% reduction in fuel use, relative to the original system, even 
if the furnace runs at low flow all the time. Manual sealing and insulation of the return 
ducts (assuming there are return ducts, which is not always the case) may be simpler than 
on the supply side, since often there is only one return register and the return duct is 
likely to be relatively short. And once again it should be noted that this does not include 
any benefit from reduced cycling or from improved efficiency of the modulating furnace 
itself. 

In either of the above two cases, going from 1/2-inch to 3/4-inch interior 
insulation. in the runouts adds 2 percentage points to the DE, for an additional 2.5% 
reduction in fuel use. 

This benchmarking study can be summarized in the following way: 

Simply mating a modulating furnace to a typical existing duct system will cause 
serious deterioration in thermal distribution efficiency. 
Most of this negative impact can be erased without requiring technicians to 
physically interact with the ductwork if a way can be found to install an iinsulating 
sleeve in the supply runout ducts. 
Combining this action with conventional retrofits of the more-accessible supply 
trunks (and perhaps the return ducts as well) can result in a thermal distribution 
efficiency with the modulating furnace at low capacity that is significantly better 
than in the as-found system at high capacity. 

CONCEPTUAL DESIGN OF A PRACTICAL SYSTEM FOR INTERNAL 
INSULATION RETROFIT 

As has been indicated above, the duct retrofit strategy envisioned in this report irivolves 
the use of insulating sleeves installed inside the supply runout ducts. But as withi the 
fairy-tale mice who were stumped by the question of how to put the bell on the cat, the 
question remains here of how to get these sleeves into the ducts. 

A definite answer to how (or even whether) this can be done cost-effectively must 
await experimentation and prototyping. There is, however, a conceptual approach that 
could serve as an initial basis for such a project. The basic elements of this approach are 
shown schematically in Figure 1. 

In this approach, insulating sleeves would be manufactured in cross-sectilonal 
profiles to fit most sizes of American ductwork, and in a sufficient number of lengths that 
they could be cut to the exact required length with a minimum of waste. Conceptually, 
they would be made from a material with the general consistency and flexibility (of the 
bubble-wrap material that is commonly used to cushion fragile shipments. A degree of 
elasticity would probably need to be engineered into the material so that it could fit 
around elbows successfully. An adhesive material would be factory-applied to the inside 
of these sleeves, with the requirement that its chemistry permit it to remain tacky until it 
is exposed to the air. (They could be packed for shipment in sealed plastic bags ]purged 
with nitrogen.) 
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The first step of the installation process would be to determine the length of the 
runout duct and cut the insulating sleeve to the proper length to fit. A device to facilitate 
this from inside the living space could be constructed (perhaps some kind of “cratwler” on 
a tether whose free end is held inside the room) but its detailed design is beyond the 
scope of this report. 

Next, the register is removed, and one end of the sleeve is rolled back on itself to 
expose a short length of the inside of the sleeve. The exposed inside of the sleeve is 
attached to the inside of the duct at the lip of the register. This is shown schematically in 
the top drawing of Figure 1. The idea is that the inside of the sleeve, with its adlhesive, 
will upon installation become the outside, facing the inside of the duct. 

The next stage of installation is the application of negative pressure to the trunk 
duct. An adjustable fan attached at the return register would serve this function. This 
would keep the whole operation within the living space. The far end of the sleeve would 
be’closed off using a temporary closure that would either “pop off’ at the completion of 
installation or could be removed with a light tug on a string attached to the closuire, said 
string trailing behind the end of the sleeve inside the duct as it is sucked in. 

Multiple sleeves might be installed simultaneously, or they might be done one at a 
time. In either case, any registers serving ducts that are not being fitted with sleeves 
would need to be sealed off during the “sucking in” process. 

The initiation of this stage is depected in the middle drawing of Figure 1. The 
completed installation would be as shown in the bottom drawing of the figure. 

CONCLUSION 

A benchmark analysis indicates a significant loss of thermal distribution efficiency 
consequent to fkrnace operation at flow rates lower than those for which the duct: system 
was originally intended. This impact may be largely mitigated through the use of a 
scheme for insulating supply runout ducts using insulating sleeves installed from within 
the conditioned space. Combining this with a conventional retrofit of the supply trunks 
and return ducts (which are generally more accessible) can further improve duct 
efficiency. Exploratory development of the concept appears to be warranted. 
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APPENDIX. HEAT LOSS FROM A BENCHMARK DUCT SYSTEM 

This appendix reviews the equations used to calculate heat losses in ducts, with reference 
to ASHRAE Standard 152P (ASHRAE 2001), and also the assumptions made coacerning 
the influence of various insulation schemes on the leakage pressures within the duct 
system. The benchmark duct system discussed in the main report is used, with 
parameters summarized as follows: 

Conditioned floor area = 2000 ft2 
Airflow rate at full capacity = 1200 cfm 
Furnace capacity at high setting = 65 000 Btu/h 
Furnace turndown ratio = 2 

0 Supply duct surface area = 540 A2 of which 240 ft2 in trunk ducts and 3001 R2 in 
runouts 
Supply leakage at full airflow = 120 cfm 

Thermal Loss Calculations 

Analysis of the relative effectiveness of internal vs. external insulation in a roundl duct 
requires use of the heat-flow equations for an insulated pipe. These can be expressed in 
terms of a general equation relating heat flow (cp, in Btu/h) to the overall heat-transfer 
coefficient (UA, in Btu/h-OF) exposed to an inside-outside temperature difference: (AT, in 
"F), togther with a specific formula giving the UA for the geometry in question: 

cp=UAAT (1) 

UA = 2 7c k L / ln(r2/ rl) (2) 

where k (in Btdft-h-OF) is the thermal conductivity of the insulating material, L is the 
length of the duct, and rl and 1-2 are the inner and outer radii, respectively, of the insulated 
layer of the duct. It is important to note here that, once the length of the duct and the 
thermal conductivity of the insulating material are determined, the UA depends only on 
the ratio of the inner and outer radii of the insulation, not on their absolute values. (This 
is a somewhat simplified analysis in that the influence of internal and external filim 
coefficients is ignored.) 

What is of interest here is the fraction of the heat supplied to the ducts that is lost 
by the air on its way through them. The relevant parameter that emerges from sulch an 
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analysis is the one that is labeled “B,” or “BT in ASHRAE Standard 152P. These B 
factors, with the subscripts referring to supply or return ducts, respectively, in the 
standard, are given by the following formula: 

B = exp[-UN(60 Q p cp) ] (3) 

where Q is the volume air flow rate in cubic feet per minute (cfm), p is the air density 
(0.075 lbdA3 at standard conditions), and cp is the specific heat at constant pressure 
(0.24 Btu/lbm- OF). (This formula appears slightly different from the one in Standard 
152P, in that UA is used instead of A/R, but the result is the same.) 

The impact of duct leakage in Standard 152 is captured through parameters 
labeled as and q. These so-called “a-factors” represent the fraction of air that doles not 
leak on the supply and return sides of the duct system, respectively. That is, 

where Qle& is the leakage flow (to or from outside) on the side of the duct system whose 
a-factor is being considered and Qe is the airflow rate at the system fan. 

The a and B factors are inputs into the equation for delivery effectiveness (DE2 
but it is not the only determinant of DE. Of equal importance are the temperatures 
experienced inside and outside the ductwork. The heating-mode equation for DE (from 
ASHRAE Standard 152P) is: 

where as and a, are leakage factors, for the supply and return sides, respectively, i%S 

defined in Equation 4. The factor Atr is the temperature difference between the house 
interior and the zone surrounding the return ducts, while Ats is a similar factor foir the 
supply ducts. The factor Ate is the temperature rise of the air as it passes through the 
furnace or heat pump. 

For benchmarking purposes, it will be assumed that Atr = Ats = 30 ”F. This is 
consistent with a duct zone temperature of -40 ”F if the temperature inside the house is 
70 ”F. This would be a reasonable seasonal average in a northern U.S. climate arid ducts 
in a ventilated attic or crawl space. 

The insulating material will be assumed to have an R-value of 4 per inch, if 
characterized in a flat-plane application such as a house wall or the wall of a rectangular 
duct. For round ducts, we need to translate this into a thermal conductivity, which is 
done using: 

k=d/R (6) 

where d is the insulation thickness (in A) and R is the thermal resistance (in A2-h-,”F/Btu). 
For the case considered here, k = .083/4 = 0.02. 

DE is defined as the ratio of heat delivered by the ducts into the living space to the heat 
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Leakage Impacts 

Two major assumptions were made that affect duct leakage under the various insulation 
and equipment conditions studied. These are: 

1. Application of internal insulation to the runouts stops any leaks occurring in that 
portion of the duct system. 

2. Internal insulation causes the pressures in the duct system to change, because of 
the reduced cross sectional area available for airflow. 

For the base case system, it was assumed that the total pressure drop over the supply duct 
system is 50 Pa. In a typical duct system, most of the pressure drop will be caused by 
such things as fittings, bends, equipment coils and heat exchangers, registers, and abrupt 
changes in cross section. The pressure drop caused by friction losses in straight ;sections 
will generally be on the order of a few pascals. 

For our purposes, however, it is necessary to estimate the impact on these: losses 
of constricting the runouts with internal insulation. To do this, the ASHRAE friction 
chart (ASHRAE 1989) was employed, providing the information in Table 2. 

Table 2. Pressure Loss from Friction in Runout Ducts 
Airflow and Pipe Length I Pipe Diameter 1 Friction Loss I Total Friction 

in. water per 100 R Loss, Pa 
100 cfm through 16 R pipe 6.0 in. 0.08 3.2 v - 1  I 5.0 '' I 0.20 

14.5 " I 0.35 I 14 
14.0 " I 0.60 I 24 I 

50 cfm through 16 R pipe 6.0 in. 0.025 1.0 
5.0 " 0.06 2.4 

7.2 
4.5 " 0.12 
4.0 " 0.18 

It is now possible to estimate the pressure at the supply plenum under various 
conditions. If there is no interior insulation, then when the airflow rate is cut in half, the 
pressure at any point in the duct should drop to one-fourth of its original value, blecause 
of the relation 

Q = C P "  (7) 

where Q is airflow, P is pressure, and C is a constant, and n=0.5 for flow through a wide 
orifice or duct. So the plenum pressure at 50 cfm airflow and no interior insulation 
should be -12.5 Pa. 
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Where there is interior insulation, the plenum pressure at 50 cfm airflow was 
estimated by adding the difference between the friction loss through 6 in. pipe and that 
through the pipe having a reduced diameter appropriate to the particular insulation level. 
This leads to: 

for 1/2 in. interior insulation, 12.5 + 2.4 - 1.0 = 13.9 Pa 
0 for 3/4 in. interior insulation, 12.4 + 4.8 - 1.0 = 16.3 Pa 
0 for 1 in. interior insulation, 12.4 + 7.2 - 1.0 = 18.7 Pa. 

The impact of these parameters on the duct leakage rate was estimated as follows. 
First, the average leakage pressure in the trunk ducts was assumed to equal 75% of the 
plenum pressure, while the average leakage pressure in the runouts was assumed to equal 
25% of the plenum pressure. Combined with the previously discussed breakout of 45% 
of the duct surface area being in the trunks and 55% in the runouts, this leads to -60% of 
the leakage occurring in the trunks and -40% in the run out^.^ 

Starting with our base assumption of 120 cfm leakage in the benchmark system 
with 1200 cfm airflow, we obtain the leakage rate for the same system with 600 cfrn of 
airflow by noting that the duct leakage at any pressure is given by Equation 7 with 
n = 0.6. The ratio (12.5/50)0.6 = 0.435, which when multiplied by 120 yields 52. The 
leakage rate in the benchmark duct system with low flow is therefore set at 52 cfm. The 
same value is used for systems where only external insulation is added, the assumption 
being that external insulation produces no measurable reduction in leakage. 

Where internal insulation is used, two effects are factored in. The first is an 
assumed elimination of that portion of the leakage that had come from the runouts, since 
the internal insulation is forced against the inside surface of the ducts, presumably with 
some kind of bonding agent, to form a seal. In the absence of any other factor, this would 
reduce the leakage to that in the trunks, i.e., 60% of 52 cfm or 3 1 cfm. However., the 
slight increase in pressure in the trunks caused by constriction of the runouts leads to 
slightly higher values. These are 33 cfm for 1/2 in. internal insulation; 37 cfm folr 3/4 in. 
insulation; and 40 cfm for 1 in. insulation. An additional set of cases was considered, in 
which the internal insulation of the runouts was combined with conventional sealling and 
insulation of the trunks, assumed to seal 2/3 of the trunk leaks. These cases would then 
reduce the total leakage rates to 11, 12, and 13 cfm for 1/2 in., 3/4 in., and 1 in. iinternal 
runout insulation, respectively. 

This split is obtained by pro-rating as follows. Trunk leakage is proportional to 0.75O.' 
X 0.45 = 0.38. Runout leakage is proportional to 0.25 o.6 X 0.55 = 0.24. Then, 01.38 is 
-60% of the total 0.38 + 0.24, while 0.24 is -40% of this sum. 
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